The 31st International Conference on Principles and Practice of Constraint Programming, Glasgow, Scotland

P Research Laboratory of
= Constrained Solving

= hE R FERRKHE Rt
- J UAS Institute of Software Chinese Academy of Sciences

University of Chinese Academy of Sciences

Parallel MIP Solving
with Dynamic Task Decomposition

Peng Lin*% Shaowei Cai *, Mengchuan Zou, Shengqgi Chen

Institute of Software, Chinese Academy of Sciences

2025.08.12
<% Presenter * Corresponding Author

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

—

Outline ISCAS

Background
* Mixed Integer Programming
« Parallel MIP Solving
PartiMIP

* Process Flow of The Framework

* Dynamic Task Decomposition

« Acceleration Components
Experiments

« Comparison to Parallel Divide-and-Conquer Strategies
« Comparison to Sequential Solving
« Ablation Study
 New Best Known Solutions to Open Instances
Future Work

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

IScAS

Background

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Mixed Integer Programming ISCAS

min c'x """" Objective Function
subject to: A:ESb -------- General Linear Constraints Solving MIP
lgazgu ------ Global Bounds is NP-Hard
a: cR" =z, € Z for all j € I -------- Integrality Constraints
Powerful Expressive Ability Extensive Practical Applications
1 ! e ” YAy
Origin * /I ;‘ }
s 4
7 ! J5 ’ ’//;qm&:ﬁ
3 m
TSP Bin Graph Resource Crew Production
Packing Problems Allocation Scheduling Planning

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Parallel MIP Solving ISCAS

Nearly all SoTA MIP solvers support parallelism.

Commercial Solvers Academic / Open-source Solvers

TSRS SCIP)
GUROBI ===7= A\HIiGHS
UG

OPTIMIZATION CPI.EX

HIGHS

GUFObI . CPLEX . Ubiquity Generator framework [Huangfu and Ha”, MPC518]
https://www.gurobi.com/ https://www.ibm.com/productsilo SCIP/FiberSCIP
g-cplex-optimization-studio [Achterberg, 2009;

Shinano, 1JOC’18]

The widely recognized H. Mittelmann benchmark ranks

MIP solvers based on parallel performance.
20 Jun 2025 ’

The MIPLIB2017 Benchmark Instances (preprocessed data)

H. Mittelmann (mittelmann@asu.edu)

The benchmark instances (v1) of MIPLIB2017 have been run by a number of codes.

The following codes were run with a limit of 2 hours on an AMD Ryzen 9 5900X}(12 cores,[128GB)
Source: https://plato.asu.edu/ftp/milp.html

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/
https://plato.asu.edu/ftp/milp.html

Challenges for Building Parallel MIP Solvers 'S<AS

* From Scratch

A massive effort is needed to build a general and effective parallel MIP solver.

« Based on Existing Solvers
* Limited access to top solvers
* The best sequential solvers are commercial and closed-source
« Academic access is restricted to black-box usage, limiting parallel integration
« Sequential dependence
* Node processing order of B&B solvers is crucial for performance.

* Replicating the order in parallel introduces costly overhead

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Approaches of Parallel MIP Solving

« Portfolio Methods
Run multiple complementary solvers/configurations on identical/perturbed instances.
« Parallel Local search: ParalLP [Lin et al., IJCAI'24]
 Different initial solutions.

« Racing ramp-up: FiberSCIP [Shinano et al., [JOC’18]

« Different parameters, branching rules, etc.

ISCAS

Limitation: Performance is inherently constrained by the best sequential execution.

Solver-1

Solver-2

|

Solver-n

Sharing Information

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

Approaches of Parallel MIP Solving ISCTAS

* Divide-and-Conquer Methods
* Accelerate solving by parallelizing key algorithmic components.
« Parallel branch-and-bound: FiberSCIP [Shinano et al., IJOC’18]
« Parallel dual simplex: HIGHS [Huangfu and Hall, MPC’18]
« Potential: Can outperform the best sequential methods.

Subproblem
(sub-MIP)

Subproblems of B&B can be processed independently.

Source: https://www.scipopt.org/workshop2014/parascip libraries.pdf

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

https://www.scipopt.org/workshop2014/parascip_libraries.pdf

Challenges in Current Divide-and-Conquer Irscas

« Tightly coupled with underlying sequential solvers.
« Heavily affected by the search strategies of sequential solvers.
 For example, in parallel branch-and-bound
« Sequential solvers generate parallel processing nodes
« Determined by the branching and node selection strategies of sequential solvers
- Parallel B&B can only be parallelized after the root node processing.
« Parallel node solving happens after branching.
« Root node solving is vital but usually requires a significant amount of time.

Presolve

Root node Node Presolve

]

[Root LP Relaxation J

Cutting Planes

Heuristics

Branching ‘ ‘

Source: https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf

Mk

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf

IScAS

PartiMIP

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Goals of PartiMIP ISCAS

Focus on divide-and-conquer
« Potential scalability
« Easy to integrate with portfolio strategies in the future

Flexible parallel strategies
« Enable search strategies independent of the base solver's internal logic.

Quick parallelization
« Enabling parallel solving before the root node processing.

Friendly Interface
« Base solvers only require standard 1/O
« Not limited to B&B solvers

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Roles in PartiMIP

Scheduler

« Maintains a dynamic task tree
« expands the tree via task decomposition

« Deduce task states
» status propagator
* Prunes search space
* oObjective separator

Workers

* Invoke a base MIP solver on assigned tasks

* Loosely coupled

ISCAS

(Scheduler)
CTTTTTTTTTTTTTommommmommmmmmees ! (T TToTTTTTTTmmmmmmmommmmoos,
: Task Tree ' Dynamic Task Decomposition |
i ! Rttt Ak i
' 1 Candidate; !
: Me.—»: Hard Task Selector
! I Tasks 1 |
. 1 Selected Task
! LoNew ! oo o
i Fo23 oW, Reward-Guided Partitioner
! ' Tasks |
: ,205 xp<1 Status Domain Domain Objective
. Propagation| |Propagation Propagation Conflict
i Feedbac| Result Objective Constraint
: i i CooT Tt rooTeTT T
! i i ' Task Status . Objective !
: {_Running Closed Resting | | Status Propagator ;| : Separator |
N Propagation *--f 4 -------- D 3
Running Termination | | Solving Best-Found ObJect'lve
. L Conflict
Task Signal Result Objective .
Constraint
' General | General . General | Root
. Worker1 __ Worker2 | . Workern ! Worker

* interact via standard |I/O interfaces

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

Task Tree ISCAS

« Nodes are the solving tasks for the original problem or subproblems of a given MIP instance.

Task Status
* Running: currently being solved by workers
« Closed: finished (either optimal or infeasible)
* The entire solve ends when root task is closed
* Resting: decomposed but unassigned

 Results are inferred from subtasks

Leaf Task: each has a distinct search space

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Process Flow of the Framework

Root First

« Scheduler assigns root task to root worker

« Enables fast termination for easy instances s

Initial Phase

« Scheduler parallelly decomposes leaf tasks
« Continues until there are enough leaf tasks
» All general workers solve distinct spaces

Dynamic Phase
« When a worker finishes its task, it becomes idle
« Scheduler dynamically decomposes running tasks

IScAS

Scheduler h
y (T T TS TToT Tt
' Dynamic Task Decomposition |
‘ o AR RaA R i
Mﬂ Hard Task Selector
! Tasks | |
1 Selected Task
New | o _ TTTToToommmmremmTTen
o Reward-Guided Partitioner |
Tasks , o« T L
Status Domain Domain Objective
Propagation | |Propagation Propagation Conflict
Feedback Result Objective I Constraint
| Task ! Status ! | Objective
| Status ' Propagator | : Separator |
"""""""""" Propagation *--p g -------" too-----geo--d)
Running Termination | | Solving Best-Found Object.lve
. o Conflict
Task Signal Result Objective .
il Constraint
{ General | | General : { General . | Root !
. Worker17 ! . Worker2 | . Workern ! . Worker

* Newly created subtasks are assigned to idle workers

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

Task Decomposition ISCAS

1. Leaf Task Selection
Select a current leaf node from the task tree.
2. Variable Choice

| Task Decomposition | Choose a branching variable for the selected task.
; Caggg:tei =§ Hard Task Selector i i 3. Domain Split
: JSe,ected Task Divide the chosen variable’s domain into two subranges.
, JEEEEESSsssssstessssssssssss ! 4. Subtask Creation
o New | | Rewards Decaying o .
| Tasks 1| Mechanism B Generate two new subtasks corresponding to subranges.
T ' 5. Domain Propagation

Apply propagation to tighten each subtask’s search space.
6. Tree Update
Insert the new subtasks as leaf nodes in the task tree.

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Hard Task Selector ISCAS

« Decompose challenging tasks first to guide resources to bottlenecks.
* Measure "Hardness"
* Initial Decomposition
Hardness is estimated by the number of non-zero elements (nnz) in the task’s constraints.
* Dynamic Decomposition

Hardness is nnz x duration (how long it has been running).

nnz of T, initial decomposition phase,
Hardness(7) =
nnz of T X duration of 7, dynamic decomposition phase.

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Reward Decomposition-effective Variable rscas

» Reinforce effective variable selections for future decompositions
« Decomposition-effective variable

« one that leads to faster resolution of subtasks than the original task.

“16” is optimal
Up propagation
“17" is optimal 11” is optimal
xg =10 ' xg <10 > I xg <10 xg =10

 Rewarding Rule:

 Reward(xt) < Reward(xt) + 1, if task T is closed via upward propagation
e xris variable used to decompose task T

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Reward-Guided Variable Selection ISCAS

Variable Selection
« Choose the variable with the highest reward and break the tie by constraint degree
Risk in reward-guided selection
» Positive feedback loop
« High reward — more likely to be selected — reward increases again
* Premature convergence; other good variables are ignored
Decaying Strategy
« Think of the reward as a "global quota" consumed with each use.

 When a variable is selected for decomposition, its reward is reduced by 1

Reward(z7) — 1, if Reward(z7) > 0

Reward(er) := { Reward(z 1), otherwise

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Acceleration Components ISCAS

Task Status Propagation Objective Conflict Constraint

* Subtasks’ search spaces together exactly - Ensure workers only explore solutions better
equal their parent's.

« Status Signals
« Domain propagation
« Worker results » Track the real-time best objective value, 0*.
* Upward Propagation » For each new task, add the constraint:
« All children infeasible — parent infeasible
* Any child optimal — parent optimal

than the current global best—found solution.

e Mechanism:;

Objective Conflict Constraint: crx7 < O* — offset

- Downward Propagation * Benefit
 When parent closes, children inherit the * Prunes search space and guides workers
same status toward improving solutions

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

IScAS

Experiments

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Experiment Settings ISCAS
Benchmark & Solvers

» Evaluated on the complete MIPLIB 2017 benchmark (240 instances).
» Integrated with state-of-the-art open-source solvers: SCIP (v9.2.0) and HIGHS (v1.9.0).

Testing Environment

« Scale: Tested on 8, 16, 32, 64, and 128 cores — the largest scale reported for entire MIPLIB.

« Time Limit: 300 seconds per instance, with over 2.3 CPU years of total compute time.

Key Performance Metrics
* Instances Solved (#SOLVED): Total problems solved to optimality / infeasible.
« Efficiency (PAR-2 Score): A combined score of runtime and completion rate.

« Solution Quality (#FEAS / #WIN): Ability to find feasible and best solutions.

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Comparison to Parallel D&C Strategies

PartiMIP consistently outperforms the default parallel

divide-and-conquer approaches of SCIP and HiGHS.

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
FiberSCIP_ 8 129 0.0% 198 0.0% 79 0.0% 102421.1 0.0%
PartiMIP-SCIP__8 159 23.3% 208 5.1% 81 2.5% 100615.9 1.8%
FiberSCIP__16 126 0.0% 200 0.0% 83 0.0% 100803.4 0.0%
PartiMIP-SCIP__16 163 29.4% 210 5.0% 86 3.6% 97747.0 3.0%
FiberSCIP__32 125 0.0% 202 0.0% 87 0.0% 98630.5 0.0%
PartiMIP-SCIP__32 168 34.4% 214 5.9% 88 1.1% 96887.0 1.8%
FiberSCIP_ 64 128 0.0% 202 0.0% 93 0.0% 95876.1 0.0%
PartiMIP-SCIP_ 64 167 30.5% 212 5.0% 94 1.1% 94113.6 1.8%
FiberSCIP_ 128 120 0.0% 201 0.0% 92 0.0% 96415.2 0.0%
PartiMIP-SCIP__ 128 168 40.0% 214 6.5% 98 6.5% 92223.4 4.3%
Parallel-HiGHS_ 8 110 0.0% 192 0.0% 79 0.0% 101955.1 0.0%
PartiMIP-HiGHS_ 8 179 62.7% 200 4.2% 89 12.7% 96903.0 5.0%
Parallel-HiGHS_ 16 107 0.0% 192 0.0% 79 0.0% 101945.6 0.0%
PartiMIP-HiGHS__ 16 184 72.0% 206 7.3% 89 12.7% 96480.1 5.4%
Parallel-HiGHS_ 32 111 0.0% 192 0.0% 79 0.0% 101956.3 0.0%
PartiMIP-HiGHS 32 186 67.6% 209 8.9% 96 21.5% 93368.3 8.4%
Parallel-HiGHS 64 101 0.0% 192 0.0% 78 0.0% 102273.5 0.0%
PartiMIP-HiGHS_ 64 190 88.1% 209 8.9% 97 24.4% 92603.9 9.5%
Parallel-HiGHS__ 128 101 0.0% 192 0.0% 78 0.0% 102322.3 0.0%
PartiMIP-HiGHS_128 190 88.1% 209 8.9% 100 28.2% 90516.2 11.5%

IScAS

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

New Best-Known Solutions

ISCAS

PartiMIP establishes 16 new best-known solutions for MIPLIB open instances.

Instance name #Variable #Constraint Previous Best PartiMIP
dirl 9142907 1735470 2708148.95990256 2708064.1369803
neos-5151569-mologa 108116 45671 686759699 686750731.344582
bmocbhd3 403771 152791 -372986719.737107 -373286017.205902
gmut-76-40 24338 2586 -14169441.78 -14169460.9675000
evalaprime6x6opt 3514 34872 -16.31528287738903 -18.100995280293
dws012-02 51108 26382 122074.2013795086 121112.055928511
neos-4232544-orira 87060 180600 5557371.400000357 5553207.1245239
neos-4292145-piako 32950 75834 29160.50026450142 28122.4999807616
polygonpack5-15 48163 163429 -55494653.8357854 -55494686.5559904
scth 37265 13304 -228.1172303718 -228.119492755556
cmflsp40-36-2-10 28152 4266 66452235.08297937 66452234.49456009
adult-regularized 32674 32709 7022.953543477999 7022.953543474559
supportcase23 24275 40502 -12160.6593559088 -12160.6593571676
neos-5045105-creuse 3848 252 20.57142909929996 20.5714105876044
gsvm2rl9 801 600 7438.181167768 7438.181021170049
s82 1690631 87878 -33.78523764658873 -33.7970576238223

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

Comparison to Sequential Solving ISCAS

PartiMIP significantly enhance the performance of sequential MIP solvers

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
SCIP__Sequential 85 0.0% 198 0.0% 73 0.0% 105616.9 0.0%
PartiMIP-SCIP_ 8 110 29.4% 208 5.1% 81 11.0% 100615.9 4.7%
PartiMIP-SCIP__16 128 50.6% 210 6.1% 86 17.8% 97747.0 7.5%
PartiMIP-SCIP_ 32 136 60.0% 214 8.1% 88 20.5% 96887.0 8.3%
PartiMIP-SCIP_ 64 142 67.1% 212 7.1% 94 28.8% 94113.6 10.9%
PartiMIP-SCIP__ 128 149 75.3% 214 8.1% 98 34.2% 92223.4 12.7%
HiGHS__Sequential 91 0.0% 191 0.0% 76 0.0% 103461.3 0.0%
PartiMIP-HiGHS 8 108 18.7% 200 4.7% 89 17.1% 96903.0 6.3%
PartiMIP-HiGHS_ 16 118 29.7% 206 7.9% 89 17.1% 96480.2 6.7%
PartiMIP-HiGHS 32 120 31.9% 209 9.4% 96 26.3% 93368.3 9.8%
PartiMIP-HiGHS 64 138 51.6% 209 9.4% 97 27.6% 92603.9 10.5%
PartiMIP-HiGHS 128 148 62.6% 209 9.4% 100 31.6% 90516.2 12.5%

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

Ablation Study

« We compared PartiMIP against a modified version
 that uses random variable selection (PartiMIP-R).
« Our reward-guided method shows consistent and significant outperformance.

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
PartiMIP-R-SCIP_8 158 0.0% 203 0.0% 78 0.0% 102534.5 0.0%
PartiMIP-SCIP_ 8 170 7.6% 208 2.5% 81 3.8% 100615.9 1.9%
PartiMIP-R-SCIP__16 154 0.0% 208 0.0% 82 0.0% 101123.1 0.0%
PartiMIP-SCIP_ 16 178 15.6% 210 1.0% 86 4.9% 97747.0 3.3%
PartiMIP-R-SCIP_ 32 169 0.0% 212 0.0% 79 0.0% 101974.5 0.0%
PartiMIP-SCIP_ 32 176 4.1% 214 0.9% 88 11.4% 96887.0 5.0%
PartiMIP-R-SCIP_ 64 166 0.0% 213 0.0% 81 0.0% 101101.9 0.0%
PartiMIP-SCIP_ 64 181 9.0% 212 -0.5% 94 16.0% 94113.6 6.9%
PartiMIP-R-SCIP__128 162 0.0% 215 0.0% 86 0.0% 98563.1 0.0%
PartiMIP-SCIP__ 128 181 11.7% 214 -0.5% 98 14.0% 92223.4 6.4%
PartiMIP-R-HiGHS_ 8 154 0.0% 199 0.0% 86 0.0% 98939.8 0.0%
PartiMIP-HiGHS_ 8 164 6.5% 200 0.5% 89 3.5% 96903.0 2.1%
PartiMIP-R-HiGHS_ 16 148 0.0% 204 0.0% 83 0.0% 99885.4 0.0%
PartiMIP-HiGHS__ 16 180 21.6% 206 1.0% 89 7.2% 96480.1 3.4%
PartiMIP-R-HiGHS 32 162 0.0% 205 0.0% 86 0.0% 98660.3 0.0%
PartiMIP-HiGHS__32 177 9.3% 209 2.0% 96 11.6% 93368.2 5.4%
PartiMIP-R-HiGHS_ 64 155 0.0% 208 0.0% 87 0.0% 98003.5 0.0%
PartiMIP-HiGHS_ 64 178 14.8% 209 0.5% 97 11.5% 92603.9 5.5%
PartiMIP-R-HiGHS__ 128 151 0.0% 206 0.0% 89 0.0% 97166.4 0.0%
PartiMIP-HiGHS_ 128 174 15.2% 209 1.5% 100 12.4% 90516.2 6.8%

ISCAS

08/12, 2025

Parallel MIP Solving with Dynamic Task Decomposition

Peng Lin, et al.

Future Works ISCAS

Extend the experiment time limits

More sophisticated selection and branching strategies

Integration with commercial solvers

Leverage more base solvers’ internal information

* e.g, node number, global cuts

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

ISCAS

Thank You!
Q&A

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.

