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Background
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Mixed Integer Programming ISCAS
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Parallel MIP Solving ISCAS

Nearly all SoTA MIP solvers support parallelism.

Commercial Solvers Academic / Open-source Solvers

TSRS SCIP )
GUROBI ===7= A\HIiGHS
UG

OPTIMIZATION CPI.EX

HIGHS

GUFObI . CPLEX . Ubiquity Generator framework [Huangfu and Ha”, MPC518]
https://www.gurobi.com/ https://www.ibm.com/productsilo SCIP/FiberSCIP
g-cplex-optimization-studio [Achterberg, 2009;

Shinano, 1JOC’18]

The widely recognized H. Mittelmann benchmark ranks

MIP solvers based on parallel performance.
20 Jun 2025 ’

The MIPLIB2017 Benchmark Instances (preprocessed data)

H. Mittelmann (mittelmann@asu.edu)

The benchmark instances (v1) of MIPLIB2017 have been run by a number of codes.

The following codes were run with a limit of 2 hours on an AMD Ryzen 9 5900X}(12 cores,[128GB)
Source: https://plato.asu.edu/ftp/milp.html
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Challenges for Building Parallel MIP Solvers 'S<AS

* From Scratch

A massive effort is needed to build a general and effective parallel MIP solver.

« Based on Existing Solvers
* Limited access to top solvers
* The best sequential solvers are commercial and closed-source
« Academic access is restricted to black-box usage, limiting parallel integration
« Sequential dependence
* Node processing order of B&B solvers is crucial for performance.

* Replicating the order in parallel introduces costly overhead
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Approaches of Parallel MIP Solving

« Portfolio Methods
Run multiple complementary solvers/configurations on identical/perturbed instances.
« Parallel Local search: ParalLP [Lin et al., IJCAI'24]
 Different initial solutions.

« Racing ramp-up: FiberSCIP [Shinano et al., [JOC’18]

« Different parameters, branching rules, etc.

ISCAS

Limitation: Performance is inherently constrained by the best sequential execution.

Solver-1

Solver-2

|

Solver-n

Sharing Information
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Approaches of Parallel MIP Solving ISCTAS

* Divide-and-Conquer Methods
* Accelerate solving by parallelizing key algorithmic components.
« Parallel branch-and-bound: FiberSCIP [Shinano et al., IJOC’18]
« Parallel dual simplex: HIGHS [Huangfu and Hall, MPC’18]
« Potential: Can outperform the best sequential methods.

Subproblem
(sub-MIP)

Subproblems of B&B can be processed independently.

Source: https://www.scipopt.org/workshop2014/parascip libraries.pdf
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Challenges in Current Divide-and-Conquer Irscas

« Tightly coupled with underlying sequential solvers.
« Heavily affected by the search strategies of sequential solvers.
 For example, in parallel branch-and-bound
« Sequential solvers generate parallel processing nodes
« Determined by the branching and node selection strategies of sequential solvers
- Parallel B&B can only be parallelized after the root node processing.
« Parallel node solving happens after branching.
« Root node solving is vital but usually requires a significant amount of time.

Presolve

Root node Node Presolve

]

[ Root LP Relaxation J

Cutting Planes

Heuristics

Branching ‘ ‘

Source: https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf

Mk
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IScAS

PartiMIP
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Goals of PartiMIP ISCAS

Focus on divide-and-conquer
« Potential scalability
« Easy to integrate with portfolio strategies in the future

Flexible parallel strategies
« Enable search strategies independent of the base solver's internal logic.

Quick parallelization
« Enabling parallel solving before the root node processing.

Friendly Interface
« Base solvers only require standard 1/O
« Not limited to B&B solvers
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Roles in PartiMIP

Scheduler

« Maintains a dynamic task tree
« expands the tree via task decomposition

« Deduce task states
» status propagator
* Prunes search space
* oObjective separator

Workers

* Invoke a base MIP solver on assigned tasks

* Loosely coupled

ISCAS

( Scheduler )
CTTTTTTTTTTTTTommommmommmmmmees ! (T TToTTTTTTTmmmmmmmommmmoos,
: Task Tree ' Dynamic Task Decomposition |
i ! Rttt Ak i
' 1 Candidate; !
: Me.—»: Hard Task Selector
! I Tasks 1 |
. 1 Selected Task
! LoNew ! oo o
i Fo23 oW, Reward-Guided Partitioner
! ' Tasks |
: ,205 xp<1 Status Domain Domain Objective
. Propagation| |Propagation Propagation Conflict
i Feedbac| Result Objective Constraint
: i i CooT Tt rooTeTT T
! i i ' Task Status . Objective !
: {_Running Closed Resting | | Status  Propagator ;| : Separator |
N Propagation *--f 4 -------- D 3
Running Termination | | Solving Best-Found ObJect'lve
. L Conflict
Task Signal Result Objective .
Constraint
' General | General . General | Root
. Worker1 __ Worker2 | . Workern ! Worker

* interact via standard |I/O interfaces
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Task Tree ISCAS

« Nodes are the solving tasks for the original problem or subproblems of a given MIP instance.

Task Status
* Running: currently being solved by workers
« Closed: finished (either optimal or infeasible)
* The entire solve ends when root task is closed
* Resting: decomposed but unassigned

 Results are inferred from subtasks

Leaf Task: each has a distinct search space
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Process Flow of the Framework

Root First

« Scheduler assigns root task to root worker

« Enables fast termination for easy instances s

Initial Phase

« Scheduler parallelly decomposes leaf tasks
« Continues until there are enough leaf tasks
» All general workers solve distinct spaces

Dynamic Phase
« When a worker finishes its task, it becomes idle
« Scheduler dynamically decomposes running tasks

IScAS

Scheduler h
y (T T TS TToT Tt
' Dynamic Task Decomposition |
‘ o AR RaA R i
Mﬂ Hard Task Selector
! Tasks | |
1 Selected Task
New | o _ TTTToToommmmremmTTen
o Reward-Guided Partitioner |
Tasks , o« T L
Status Domain Domain Objective
Propagation | |Propagation Propagation Conflict
Feedback Result Objective I Constraint
| Task ! Status ! | Objective
| Status ' Propagator | : Separator |
"""""""""" Propagation *--p g -------"  too-----geo--d )
Running Termination | | Solving Best-Found Object.lve
. o Conflict
Task Signal Result Objective .
il Constraint
{ General | | General : { General . | Root !
. Worker17 ! . Worker2 | . Workern ! . Worker

* Newly created subtasks are assigned to idle workers
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Task Decomposition ISCAS

1. Leaf Task Selection
Select a current leaf node from the task tree.
2. Variable Choice

__________________________________

| Task Decomposition | Choose a branching variable for the selected task.
; Caggg:tei =§ Hard Task Selector i i 3. Domain Split
: JSe,ected Task Divide the chosen variable’s domain into two subranges.
, JEEEEESSsssssstessssssssssss ! 4. Subtask Creation
o New | | Rewards Decaying o .
| Tasks 1| Mechanism B Generate two new subtasks corresponding to subranges.
T ' 5. Domain Propagation

Apply propagation to tighten each subtask’s search space.
6. Tree Update
Insert the new subtasks as leaf nodes in the task tree.
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Hard Task Selector ISCAS

« Decompose challenging tasks first to guide resources to bottlenecks.
* Measure "Hardness"
* Initial Decomposition
Hardness is estimated by the number of non-zero elements (nnz) in the task’s constraints.
* Dynamic Decomposition

Hardness is nnz x duration (how long it has been running).

nnz of T, initial decomposition phase,
Hardness(7) =
nnz of T X duration of 7, dynamic decomposition phase.
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Reward Decomposition-effective Variable rscas

» Reinforce effective variable selections for future decompositions
« Decomposition-effective variable

« one that leads to faster resolution of subtasks than the original task.

“16” is optimal
Up propagation
“17" is optimal 11” is optimal
xg =10 ' xg <10 > I xg <10 xg =10

 Rewarding Rule:

 Reward(xt) < Reward(xt) + 1, if task T is closed via upward propagation
e xris variable used to decompose task T
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Reward-Guided Variable Selection ISCAS

Variable Selection
« Choose the variable with the highest reward and break the tie by constraint degree
Risk in reward-guided selection
» Positive feedback loop
« High reward — more likely to be selected — reward increases again
* Premature convergence; other good variables are ignored
Decaying Strategy
« Think of the reward as a "global quota" consumed with each use.

 When a variable is selected for decomposition, its reward is reduced by 1

Reward(z7) — 1, if Reward(z7) > 0

Reward(er) := { Reward(z 1), otherwise
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Acceleration Components ISCAS

Task Status Propagation Objective Conflict Constraint

* Subtasks’ search spaces together exactly - Ensure workers only explore solutions better
equal their parent's.

« Status Signals
« Domain propagation
« Worker results » Track the real-time best objective value, 0*.
* Upward Propagation » For each new task, add the constraint:
« All children infeasible — parent infeasible
* Any child optimal — parent optimal

than the current global best—found solution.

e Mechanism:;

Objective Conflict Constraint: crx7 < O* — offset

- Downward Propagation * Benefit
 When parent closes, children inherit the * Prunes search space and guides workers
same status toward improving solutions
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IScAS

Experiments
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Experiment Settings ISCAS
Benchmark & Solvers

» Evaluated on the complete MIPLIB 2017 benchmark (240 instances).
» Integrated with state-of-the-art open-source solvers: SCIP (v9.2.0) and HIGHS (v1.9.0).

Testing Environment

« Scale: Tested on 8, 16, 32, 64, and 128 cores — the largest scale reported for entire MIPLIB.

« Time Limit: 300 seconds per instance, with over 2.3 CPU years of total compute time.

Key Performance Metrics
* Instances Solved (#SOLVED): Total problems solved to optimality / infeasible.
« Efficiency (PAR-2 Score): A combined score of runtime and completion rate.

« Solution Quality (#FEAS / #WIN): Ability to find feasible and best solutions.
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Comparison to Parallel D&C Strategies

PartiMIP consistently outperforms the default parallel

divide-and-conquer approaches of SCIP and HiGHS.

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
FiberSCIP_ 8 129 0.0% 198 0.0% 79 0.0% 102421.1 0.0%
PartiMIP-SCIP__8 159 23.3% 208 5.1% 81 2.5% 100615.9 1.8%
FiberSCIP__16 126 0.0% 200 0.0% 83 0.0% 100803.4 0.0%
PartiMIP-SCIP__16 163 29.4% 210 5.0% 86 3.6% 97747.0 3.0%
FiberSCIP__32 125 0.0% 202 0.0% 87 0.0% 98630.5 0.0%
PartiMIP-SCIP__32 168 34.4% 214 5.9% 88 1.1%  96887.0 1.8%
FiberSCIP_ 64 128 0.0% 202 0.0% 93 0.0% 95876.1 0.0%
PartiMIP-SCIP_ 64 167 30.5% 212 5.0% 94 1.1%  94113.6 1.8%
FiberSCIP_ 128 120 0.0% 201 0.0% 92 0.0% 96415.2 0.0%
PartiMIP-SCIP__ 128 168 40.0% 214 6.5% 98 6.5%  92223.4 4.3%
Parallel-HiGHS_ 8 110 0.0% 192 0.0% 79 0.0% 101955.1 0.0%
PartiMIP-HiGHS_ 8 179  62.7% 200 4.2% 89 12.7% 96903.0 5.0%
Parallel-HiGHS_ 16 107 0.0% 192 0.0% 79 0.0% 101945.6 0.0%
PartiMIP-HiGHS__ 16 184 72.0% 206 7.3% 89 12.7% 96480.1 5.4%
Parallel-HiGHS_ 32 111 0.0% 192 0.0% 79 0.0% 101956.3 0.0%
PartiMIP-HiGHS 32 186 67.6% 209 8.9% 96 21.5% 93368.3 8.4%
Parallel-HiGHS 64 101 0.0% 192 0.0% 78 0.0% 102273.5 0.0%
PartiMIP-HiGHS_ 64 190 88.1% 209 8.9% 97 24.4% 92603.9 9.5%
Parallel-HiGHS__ 128 101 0.0% 192 0.0% 78 0.0% 102322.3 0.0%
PartiMIP-HiGHS_128 190 88.1% 209 8.9% 100 28.2% 90516.2 11.5%

IScAS
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New Best-Known Solutions

ISCAS

PartiMIP establishes 16 new best-known solutions for MIPLIB open instances.

Instance name #Variable #Constraint Previous Best PartiMIP
dirl 9142907 1735470 2708148.95990256 2708064.1369803
neos-5151569-mologa 108116 45671 686759699  686750731.344582
bmocbhd3 403771 152791  -372986719.737107  -373286017.205902
gmut-76-40 24338 2586 -14169441.78  -14169460.9675000
evalaprime6x6opt 3514 34872  -16.31528287738903 -18.100995280293
dws012-02 51108 26382  122074.2013795086  121112.055928511
neos-4232544-orira 87060 180600  5557371.400000357 5553207.1245239
neos-4292145-piako 32950 75834  29160.50026450142  28122.4999807616
polygonpack5-15 48163 163429  -55494653.8357854  -55494686.5559904
scth 37265 13304 -228.1172303718  -228.119492755556
cmflsp40-36-2-10 28152 4266  66452235.08297937 66452234.49456009
adult-regularized 32674 32709  7022.953543477999  7022.953543474559
supportcase23 24275 40502  -12160.6593559088 -12160.6593571676
neos-5045105-creuse 3848 252 20.57142909929996  20.5714105876044
gsvm2rl9 801 600 7438.181167768  7438.181021170049
s82 1690631 87878  -33.78523764658873 -33.7970576238223
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Comparison to Sequential Solving ISCAS

PartiMIP significantly enhance the performance of sequential MIP solvers

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
SCIP__Sequential 85 0.0% 198 0.0% 73 0.0% 105616.9  0.0%
PartiMIP-SCIP_ 8 110 29.4% 208 5.1% 81 11.0% 100615.9 4.7%
PartiMIP-SCIP__16 128 50.6% 210 6.1% 86 17.8%  97747.0 7.5%
PartiMIP-SCIP_ 32 136 60.0% 214 8.1% 88 20.5%  96887.0 8.3%
PartiMIP-SCIP_ 64 142 67.1% 212 7.1% 94 28.8%  94113.6  10.9%
PartiMIP-SCIP__ 128 149 75.3% 214 8.1% 98 34.2%  92223.4 12.7%
HiGHS__Sequential 91 0.0% 191 0.0% 76 0.0% 103461.3  0.0%
PartiMIP-HiGHS 8 108 18.7% 200 4.7% 89 17.1%  96903.0 6.3%
PartiMIP-HiGHS_ 16 118 29.7% 206 7.9% 89 17.1%  96480.2 6.7%
PartiMIP-HiGHS 32 120 31.9% 209 9.4% 96 26.3%  93368.3 9.8%
PartiMIP-HiGHS 64 138 51.6% 209 9.4% 97 27.6%  92603.9 10.5%
PartiMIP-HiGHS 128 148 62.6% 209 9.4% 100 31.6%  90516.2 12.5%

08/12, 2025 Parallel MIP Solving with Dynamic Task Decomposition Peng Lin, et al.



Ablation Study

« We compared PartiMIP against a modified version
 that uses random variable selection (PartiMIP-R).
« Our reward-guided method shows consistent and significant outperformance.

Solver WIN W-Imp. FEAS F-Imp. SOLVED S-Imp. PAR-2 P-Imp.
PartiMIP-R-SCIP_8 158 0.0% 203 0.0% 78 0.0% 102534.5 0.0%
PartiMIP-SCIP_ 8 170 7.6% 208 2.5% 81 3.8% 100615.9 1.9%
PartiMIP-R-SCIP__16 154 0.0% 208 0.0% 82 0.0% 101123.1 0.0%
PartiMIP-SCIP_ 16 178 15.6% 210 1.0% 86 4.9% 97747.0 3.3%
PartiMIP-R-SCIP_ 32 169 0.0% 212 0.0% 79 0.0% 101974.5 0.0%
PartiMIP-SCIP_ 32 176 4.1% 214 0.9% 88 11.4%  96887.0 5.0%
PartiMIP-R-SCIP_ 64 166 0.0% 213 0.0% 81 0.0% 101101.9 0.0%
PartiMIP-SCIP_ 64 181 9.0% 212 -0.5% 94 16.0%  94113.6 6.9%
PartiMIP-R-SCIP__128 162 0.0% 215 0.0% 86 0.0% 98563.1 0.0%
PartiMIP-SCIP__ 128 181 11.7% 214 -0.5% 98 14.0%  92223.4 6.4%
PartiMIP-R-HiGHS_ 8 154 0.0% 199 0.0% 86 0.0% 98939.8 0.0%
PartiMIP-HiGHS_ 8 164 6.5% 200 0.5% 89 3.5% 96903.0 2.1%
PartiMIP-R-HiGHS_ 16 148 0.0% 204 0.0% 83 0.0% 99885.4 0.0%
PartiMIP-HiGHS__ 16 180 21.6% 206 1.0% 89 7.2% 96480.1 3.4%
PartiMIP-R-HiGHS 32 162 0.0% 205 0.0% 86 0.0% 98660.3 0.0%
PartiMIP-HiGHS__32 177 9.3% 209 2.0% 96 11.6%  93368.2 5.4%
PartiMIP-R-HiGHS_ 64 155 0.0% 208 0.0% 87 0.0% 98003.5 0.0%
PartiMIP-HiGHS_ 64 178 14.8% 209 0.5% 97 11.5%  92603.9 5.5%
PartiMIP-R-HiGHS__ 128 151 0.0% 206 0.0% 89 0.0% 97166.4 0.0%
PartiMIP-HiGHS_ 128 174 15.2% 209 1.5% 100 12.4% 90516.2 6.8%

ISCAS
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Future Works ISCAS

Extend the experiment time limits

More sophisticated selection and branching strategies

Integration with commercial solvers

Leverage more base solvers’ internal information

* e.g, node number, global cuts
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Thank You!
Q&A
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