
The 31st International Conference on Principles and Practice of Constraint Programming, Glasgow, Scotland

Parallel MIP Solving 
with Dynamic Task Decomposition

Peng Lin  , Shaowei Cai *, Mengchuan Zou, Shengqi Chen

Institute of Software, Chinese Academy of Sciences

2025.08.12
Presenter * Corresponding Author

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Background
• Mixed Integer Programming
• Parallel MIP Solving

PartiMIP
• Process Flow of The Framework
• Dynamic Task Decomposition
• Acceleration Components

Experiments
• Comparison to Parallel Divide-and-Conquer Strategies
• Comparison to Sequential Solving
• Ablation Study
• New Best Known Solutions to Open Instances

Future Work

Outline

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Background

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



General Linear Constraints Solving MIP 

is NP-Hard

Objective Function

Global Bounds

Integrality Constraints

Powerful Expressive Ability

TSP Bin 
Packing

Graph 
Problems

Extensive Practical Applications

Resource 
Allocation

Crew 
Scheduling

Production 
Planning

Mixed Integer Programming

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Parallel MIP Solving
Nearly all SoTA MIP solvers support parallelism.

CPLEX
https://www.ibm.com/products/ilo

g-cplex-optimization-studio

Gurobi
https://www.gurobi.com/

HiGHS 
[Huangfu and Hall, MPC’18]

SCIP/FiberSCIP 
[Achterberg, 2009;
Shinano, IJOC’18]

The widely recognized H. Mittelmann benchmark ranks 
MIP solvers based on parallel performance.

Commercial Solvers Academic / Open-source Solvers

Source: https://plato.asu.edu/ftp/milp.html

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.gurobi.com/
https://plato.asu.edu/ftp/milp.html


• From Scratch

• A massive effort is needed to build a general and effective parallel MIP solver.

• Based on Existing Solvers

• Limited access to top solvers

• The best sequential solvers are commercial and closed-source

• Academic access is restricted to black-box usage, limiting parallel integration

• Sequential dependence

• Node processing order of B&B solvers is crucial for performance.

• Replicating the order in parallel introduces costly overhead

Challenges for Building Parallel MIP Solvers

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Approaches of Parallel MIP Solving
• Portfolio Methods

• Run multiple complementary solvers/configurations on identical/perturbed instances.
• Parallel Local search: ParaILP [Lin et al., IJCAI’24]

• Different initial solutions.
• Racing ramp-up: FiberSCIP [Shinano et al., IJOC’18]

• Different parameters, branching rules, etc.
• Limitation: Performance is inherently constrained by the best sequential execution. 

Solver-1 Solver-2 Solver-n

Sharing Information

…

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Approaches of Parallel MIP Solving
• Divide-and-Conquer Methods

• Accelerate solving by parallelizing key algorithmic components. 
• Parallel branch-and-bound: FiberSCIP [Shinano et al., IJOC’18]
• Parallel dual simplex: HiGHS [Huangfu and Hall, MPC’18]

• Potential: Can outperform the best sequential methods. 

Subproblems of B&B can be processed independently.

Source: https://www.scipopt.org/workshop2014/parascip_libraries.pdf

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition

https://www.scipopt.org/workshop2014/parascip_libraries.pdf


Challenges in Current Divide-and-Conquer
• Tightly coupled with underlying sequential solvers. 

• Heavily affected by the search strategies of sequential solvers.
• For example, in parallel branch-and-bound

• Sequential solvers generate parallel processing nodes
• Determined by the branching and node selection strategies of sequential solvers

• Parallel B&B can only be parallelized after the root node processing.
• Parallel node solving happens after branching.
• Root node solving is vital but usually requires a significant amount of time.

Source: https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition

https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf
https://www.gurobi.com/wp-content/uploads/How-to-Exploit-Parallelism-in-Linear-and-Mixed-Integer-Programming.pdf


PartiMIP

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Goals of PartiMIP

• Focus on divide-and-conquer
• Potential scalability
• Easy to integrate with portfolio strategies in the future

• Flexible parallel strategies
• Enable search strategies independent of the base solver's internal logic. 

• Quick parallelization
• Enabling parallel solving before the root node processing.

• Friendly Interface
• Base solvers only require standard I/O
• Not limited to B&B solvers

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Roles in PartiMIP

Scheduler
• Maintains a dynamic task tree 

• expands the tree via task decomposition
• Deduce task states 

• status propagator
• Prunes search space 

• objective separator

Workers
• Invoke a base MIP solver on assigned tasks
• Loosely coupled

• interact via standard I/O interfaces

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Task Tree

Task Status

• Running: currently being solved by workers

• Closed: finished (either optimal or infeasible)

• The entire solve ends when root task is closed

• Resting: decomposed but unassigned

• Results are inferred from subtasks

Leaf Task: each has a distinct search space

• Nodes are the solving tasks for the original problem or subproblems of a given MIP instance.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Process Flow of the Framework
Root First
• Scheduler assigns root task to root worker
• Enables fast termination for easy instances

Initial Phase
• Scheduler parallelly decomposes leaf tasks
• Continues until there are enough leaf tasks
• All general workers solve distinct spaces

Dynamic Phase
• When a worker finishes its task, it becomes idle
• Scheduler dynamically decomposes running tasks
• Newly created subtasks are assigned to idle workers

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Task Decomposition

1. Leaf Task Selection
Select a current leaf node from the task tree.

2. Variable Choice
Choose a branching variable for the selected task.

3. Domain Split
Divide the chosen variable’s domain into two subranges.

4. Subtask Creation
Generate two new subtasks corresponding to subranges.

5. Domain Propagation
Apply propagation to tighten each subtask’s search space.

6. Tree Update
Insert the new subtasks as leaf nodes in the task tree.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Hard Task Selector
• Decompose challenging tasks first to guide resources to bottlenecks.

• Measure "Hardness"

• Initial Decomposition

Hardness is estimated by the number of non-zero elements (𝑛𝑛𝑧) in the task‘s constraints.

• Dynamic Decomposition

Hardness is 𝑛𝑛𝑧 × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 (how long it has been running).

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Reward Decomposition-effective Variable

• Reinforce effective variable selections for future decompositions

• Decomposition-effective variable

• one that leads to faster resolution of subtasks than the original task.

• Rewarding Rule: 

• Reward x! < Reward x! + 1, if task T is closed via upward propagation
• x! is variable used to decompose task T

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Reward-Guided Variable Selection
Variable Selection

• Choose the variable with the highest reward and break the tie by constraint degree

Risk in reward-guided selection

• Positive feedback loop

• High reward → more likely to be selected → reward increases again

• Premature convergence; other good variables are ignored

Decaying Strategy

• Think of the reward as a "global quota" consumed with each use.

• When a variable is selected for decomposition, its reward is reduced by 1

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Acceleration Components

Task Status Propagation

• Subtasks’ search spaces together exactly 
equal their parent’s.

• Status Signals
• Domain propagation
• Worker results

• Upward Propagation
• All children infeasible → parent infeasible
• Any child optimal → parent optimal

• Downward Propagation
• When parent closes, children inherit the 

same status

• Ensure workers only explore solutions better 

than the current global best–found solution.

• Mechanism:

• Track the real-time best objective value, 𝑂∗ .

• For each new task, add the constraint:

• Benefit

• Prunes search space and guides workers 

toward improving solutions

Objective Conflict Constraint

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Experiments

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Experiment Settings
Benchmark & Solvers

• Evaluated on the complete MIPLIB 2017 benchmark (240 instances).

• Integrated with state-of-the-art open-source solvers: SCIP (v9.2.0) and HiGHS (v1.9.0).

Testing Environment
• Scale: Tested on 8, 16, 32, 64, and 128 cores — the largest scale reported for entire MIPLIB.

• Time Limit: 300 seconds per instance, with over 2.3 CPU years of total compute time.

Key Performance Metrics
• Instances Solved (#SOLVED): Total problems solved to optimality / infeasible.

• Efficiency (PAR-2 Score): A combined score of runtime and completion rate.

• Solution Quality (#FEAS / #WIN): Ability to find feasible and best solutions.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Comparison to Parallel D&C Strategies
PartiMIP consistently outperforms the default parallel 

divide-and-conquer approaches of SCIP and HiGHS.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



New Best-Known Solutions

PartiMIP establishes 16 new best-known solutions for MIPLIB open instances.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Comparison to Sequential Solving

PartiMIP significantly enhance the performance of sequential MIP solvers

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Ablation Study
• We compared PartiMIP against a modified version 

• that uses random variable selection (PartiMIP-R).
• Our reward-guided method shows consistent and significant outperformance.

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Future Works

• Extend the experiment time limits

• More sophisticated selection and branching strategies

• Integration with commercial solvers

• Leverage more base solvers’ internal information 

• e.g, node number, global cuts

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition



Thank You! 
Q&A

08/12, 2025 Peng Lin, et al.Parallel MIP Solving with Dynamic Task Decomposition


